Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Front Immunol ; 14: 1147871, 2023.
Article in English | MEDLINE | ID: covidwho-2307134

ABSTRACT

The immune response to invading pathogens is characterized by the rapid establishment of a complex network of cellular interactions and soluble signals. The correct balancing of activating and regulating pathways and tissue-homing signals determines its effectiveness and persistence over time. Emerging viral pathogens have always represented a great challenge to the immune system and an often uncontrolled/imbalanced immune response has been described (e.g. cytokine storm, immune paralysis), contributing to the severity of the disease. Several immune biomarkers and cell subsets have been identified as major players in the cascade of events leading to severe diseases, highlighting the rationale for host-directed intervention strategy. There are millions of immunocompromised pediatric and adult patients worldwide (e.g. transplant recipients, hematologic patients, subjects with primary immune-deficiencies), experiencing an impaired immune reactivity, due to diseases and/or to the medical treatments. The reduced immune reactivity could have two paradoxical non-exclusive effects: a weak protective immunity on one hand, and a reduced contribution to immune-mediated pathogenetic processes on the other hand. In these sensitive contexts, the impact of emerging infections represents a still open issue to be explored with several challenges for immunologists, virologists, physicians and epidemiologists. In this review, we will address emerging infections in immunocompromised hosts, to summarize the available data concerning the immune response profile, its influence on the clinical presentation, the possible contribution of persistent viral shedding in generating new viral variants with improved immune escape features, and the key role of vaccination.


Subject(s)
Virus Diseases , Humans , Child , Immunocompromised Host , Immunity
2.
Front Immunol ; 13: 981693, 2022.
Article in English | MEDLINE | ID: covidwho-2142011

ABSTRACT

Objectives: Emergence of new variants of SARS-CoV-2 might affect vaccine efficacy. Therefore, assessing the capacity of sera to neutralize variants of concern (VOCs) in BSL-2 conditions will help evaluating the immune status of population following vaccination or infection. Methods: Pseudotyped viruses bearing SARS-CoV-2 spike protein from Wuhan-Hu-1/D614G strains (wild type, WT), B.1.617.2 (Delta), or B.1.1.529 (Omicron) VOCs were generated to assess the neutralizing antibodies (nAbs) activity by a pseudovirus-based neutralization assay (PVNA). PVNA performance was assessed in comparison to the micro-neutralization test (MNT) based on live viruses. Sera collected from COVID-19 convalescents and vaccinees receiving mRNA (BNT16b2 or mRNA-1273) or viral vector (AZD1222 or Ad26.COV2.S) vaccines were used to measure nAbs elicited by two-dose BNT16b2, mRNA-1273, AZD1222 or one-dose Ad26.CO2.S, at different times from completed vaccination, ~ 1.5 month and ~ 4-6 months. Sera from pre-pandemic and unvaccinated individuals were analyzed as controls. Neutralizing activity following booster vaccinations against VOCs was also determined. Results: PVNA titers correlated with the gold standard MNT assay, validating the reliability of PVNA. Sera analyzed late from the second dose showed a reduced neutralization activity compared to sera collected earlier. Ad26.CO2.S vaccination led to very low or absent nAbs. Neutralization of Delta and Omicron BA.1 VOCs showed significant reduction of nAbs respect to WT strain. Importantly, booster doses enhanced Omicron BA.1 nAbs, with persistent levels at 3 months from boosting. Conclusions: PVNA is a reliable tool for assessing anti-SARS-CoV-2 nAbs helping the establishment of a correlate of protection and the management of vaccination strategies.


Subject(s)
COVID-19 , RNA Viruses , Ad26COVS1 , Antibodies, Neutralizing , COVID-19/prevention & control , Carbon Dioxide , ChAdOx1 nCoV-19 , Humans , Membrane Glycoproteins/metabolism , RNA, Messenger , Reproducibility of Results , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins
3.
Euro Surveill ; 27(42)2022 10.
Article in English | MEDLINE | ID: covidwho-2089697

ABSTRACT

BackgroundCountries worldwide are focusing to mitigate the ongoing SARS-CoV-2 pandemic by employing public health measures. Laboratories have a key role in the control of SARS-CoV-2 transmission. Serology for SARS-CoV-2 is of critical importance to support diagnosis, define the epidemiological framework and evaluate immune responses to natural infection and vaccine administration.AimThe aim of this study was the assessment of the actual capability among laboratories involved in sero-epidemiological studies on COVID-19 in EU/EEA and EU enlargement countries to detect SARS-CoV-2 antibodies through an external quality assessment (EQA) based on proficiency testing.MethodsThe EQA panels were composed of eight different, pooled human serum samples (all collected in 2020 before the vaccine roll-out), addressing sensitivity and specificity of detection. The panels and two EU human SARS-CoV-2 serological standards were sent to 56 laboratories in 30 countries.ResultsThe overall performance of laboratories within this EQA indicated a robust ability to establish past SARS-CoV-2 infections via detection of anti-SARS-CoV-2 antibodies, with 53 of 55 laboratories using at least one test that characterised all EQA samples correctly. IgM-specific test methods provided most incorrect sample characterisations (24/208), while test methods detecting total immunoglobulin (0/119) and neutralising antibodies (2/230) performed the best. The semiquantitative assays used by the EQA participants also showed a robust performance in relation to the standards.ConclusionOur EQA showed a high capability across European reference laboratories for reliable diagnostics for SARS-CoV-2 antibody responses. Serological tests that provide robust and reliable detection of anti-SARS-CoV-2 antibodies are available.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Laboratories , Antibodies, Viral , Sensitivity and Specificity , Immunoglobulin M , Antibodies, Neutralizing
4.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2057705

ABSTRACT

Objectives Emergence of new variants of SARS-CoV-2 might affect vaccine efficacy. Therefore, assessing the capacity of sera to neutralize variants of concern (VOCs) in BSL-2 conditions will help evaluating the immune status of population following vaccination or infection. Methods Pseudotyped viruses bearing SARS-CoV-2 spike protein from Wuhan-Hu-1/D614G strains (wild type, WT), B.1.617.2 (Delta), or B.1.1.529 (Omicron) VOCs were generated to assess the neutralizing antibodies (nAbs) activity by a pseudovirus-based neutralization assay (PVNA). PVNA performance was assessed in comparison to the micro-neutralization test (MNT) based on live viruses. Sera collected from COVID-19 convalescents and vaccinees receiving mRNA (BNT16b2 or mRNA-1273) or viral vector (AZD1222 or Ad26.COV2.S) vaccines were used to measure nAbs elicited by two-dose BNT16b2, mRNA-1273, AZD1222 or one-dose Ad26.CO2.S, at different times from completed vaccination, ~ 1.5 month and ~ 4-6 months. Sera from pre-pandemic and unvaccinated individuals were analyzed as controls. Neutralizing activity following booster vaccinations against VOCs was also determined. Results PVNA titers correlated with the gold standard MNT assay, validating the reliability of PVNA. Sera analyzed late from the second dose showed a reduced neutralization activity compared to sera collected earlier. Ad26.CO2.S vaccination led to very low or absent nAbs. Neutralization of Delta and Omicron BA.1 VOCs showed significant reduction of nAbs respect to WT strain. Importantly, booster doses enhanced Omicron BA.1 nAbs, with persistent levels at 3 months from boosting. Conclusions PVNA is a reliable tool for assessing anti-SARS-CoV-2 nAbs helping the establishment of a correlate of protection and the management of vaccination strategies.

5.
JMIR bioinformatics and biotechnology ; 3(1), 2022.
Article in English | EuropePMC | ID: covidwho-1743614

ABSTRACT

Background Early sequencing and quick analysis of the SARS-CoV-2 genome have contributed to the understanding of the dynamics of COVID-19 epidemics and in designing countermeasures at a global level. Objective Amplicon-based next-generation sequencing (NGS) methods are widely used to sequence the SARS-CoV-2 genome and to identify novel variants that are emerging in rapid succession as well as harboring multiple deletions and amino acid–changing mutations. Methods To facilitate the analysis of NGS sequencing data obtained from amplicon-based sequencing methods, here, we propose an easy-to-use SARS-CoV-2 genome assembler: the Easy-to-use SARS-CoV-2 Assembler (ESCA) pipeline. Results Our results have shown that ESCA could perform high-quality genome assembly from Ion Torrent and Illumina raw data and help the user in easily correct low-coverage regions. Moreover, ESCA includes the possibility of comparing assembled genomes of multisample runs through an easy table format. Conclusions In conclusion, ESCA automatically furnished a variant table output file, fundamental to rapidly recognizing variants of interest. Our pipeline could be a useful method for obtaining a complete, rapid, and accurate analysis even with minimal knowledge in bioinformatics.

6.
Front Med (Lausanne) ; 8: 815870, 2021.
Article in English | MEDLINE | ID: covidwho-1674353

ABSTRACT

BACKGROUND: Vaccines for coronavirus disease 2019 (COVID-19) are proving to be very effective in preventing severe illness; however, although rare, post-vaccine infections have been reported. The present study focuses on virological and serological features of 94 infections that occurred in Lazio Region (Central Italy) between 27 December 2020, and 30 March 2021, after one or two doses of mRNA BNT162b2 vaccine. METHODS: We evaluated clinical features, virological (viral load; viral infectiousness; genomic characterisation), and serological (anti-nucleoprotein Ig; anti-Spike RBD IgG; neutralising antibodies, nAb) characteristics of 94 post-vaccine infections at the time of diagnosis. Nasopharyngeal swabs (NPSs) and serum samples were collected in the framework of the surveillance activities on SARS-CoV-2 variants established in Lazio Region (Central Italy) and analysed at the National Institute for Infectious Diseases "L. Spallanzani" in Rome. RESULTS: The majority (92.6%) of the post-vaccine infections showed pauci/asymptomatic or mild clinical course, with symptoms and hospitalisation rate significantly less frequent in patients infected after full vaccination course as compared to patients who received a single dose vaccine. Although differences were not statistically significant, viral loads and isolation rates were lower in NPSs from patients infected after receiving two vaccine doses as compared to patients with one dose. Most cases (84%) had nAb in serum at the time of infection diagnosis, which is a sub-group of vaccinees, were found similarly able to neutralise Alpha and Gamma variants. Asymptomatic individuals showed higher nAb titres as compared to symptomatic cases (median titre: 1:120 vs. 1:40, respectively). Finally, the proportion of post-vaccine infections attributed either to Alpha and Gamma variants was similar to the proportion observed in the contemporary unvaccinated population in the Lazio region, and mutational analysis did not reveal enrichment of a defined set of Spike protein substitutions depending on the vaccination status. CONCLUSION: Our study conducted using real-life data, emphasised the importance of monitoring vaccine breakthrough infections, through the characterisation of virological, immunological, and clinical features associated with these events, in order to tune prevention measures in the next phase of the COVID-19 pandemic.

8.
Biomolecules ; 11(3)2021 03 13.
Article in English | MEDLINE | ID: covidwho-1136455

ABSTRACT

COVID-19 pandemic is a dramatic health, social and economic global challenge. There is urgent need to maximize testing capacity. Rapid Antigen Tests (RAT) represent good candidates for point-of-care and mass surveillance testing to rapidly identify SARS-CoV-2-infected people, counterbalancing lower sensitivity vs. gold standard molecular tests with fast results and possible recurrent testing. We describe the results obtained with the testing algorithm implemented at points of entry (airports and ports) in the Lazio Region (Italy), using the STANDARD F COVID-19 Antigen Fluorescence ImmunoAssay (FIA), followed by molecular confirmation of FIA-positive samples. From mid-August to mid-October 2020, 73,643 RAT were reported to the Regional Surveillance Information System for travelers at points of entry in Lazio Region. Of these, 1176 (1.6%) were FIA-positive, and the proportion of RT-PCR-confirmed samples was 40.5%. Our data show that the probability of confirmation was directly dependent from the semi-quantitative FIA results. In addition, the molecularly confirmed samples were those with high levels of virus and that were actually harboring infectious virus. These results support public health strategies based on early mass screening campaigns by RAT in settings where molecular testing is not feasible or easily accessible, such as points of entry. This approach would contribute to promptly controlling viral spread through travel, which is now of particular concern due to the spread of SARS-CoV-2 variants.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Immunoassay/methods , Mass Screening/methods , SARS-CoV-2/isolation & purification , Animals , Antigens, Viral/immunology , COVID-19/immunology , Chlorocebus aethiops , Humans , Italy , Pandemics/prevention & control , Point-of-Care Testing , ROC Curve , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Sensitivity and Specificity , Vero Cells
9.
Front Genet ; 12: 625607, 2021.
Article in English | MEDLINE | ID: covidwho-1106023

ABSTRACT

We report phylogenetic and mutational analysis by NGS of six SARS-CoV-2 strains from patients flying from Bangladesh to Italy (July 2020). Data suggest that no further circulation of such imported strains occurred in Italy, stating the efficacy of early screening at the point of entry and supporting the importance of molecular epidemiology in monitoring the efficacy of control measures.

10.
Int J Environ Res Public Health ; 18(4)2021 02 23.
Article in English | MEDLINE | ID: covidwho-1100115

ABSTRACT

Since December 2019, SARS-CoV-2 infection has been still rapidly spreading, resulting in a pandemic, followed by an increasing number of cases in countries throughout the world. The severity of the disease depends on the patient's overall medical condition but no appropriate markers are available to establish the prognosis of the patients. We performed a 16S rRNA gene sequencing, revealing an altered composition of the nasal/oropharyngeal (NOP) microbiota in 21 patients affected by COVID-19, paucisymptomatic or in an Intensive Care Unit (ICU), as compared to 10 controls negative for COVID-19 or eight affected by a different Human Coronavirus (HKU, NL63 and OC43). A significant decrease in Chao1 index was observed when patients affected by COVID-19 (in ICU) were compared to paucisymptomatic. Furthermore, patients who were in ICU, paucisymptomatic or affected by other Coronaviruses all displayed a decrease in the Chao1 index when compared to controls, while Shannon index significantly decreased only in patients under ICU as compared to controls and paucisymptomatic patients. At the phylum level, Deinococcus-Thermus was present only in controls as compared to SARS-CoV-2 patients admitted to ICU, paucisymptomatic or affected by other coronaviruses. Candidatus Saccharibacteria (formerly known as TM7) was strongly increased in negative controls and SARS-CoV-2 paucisymptomatic patients as compared to SARS-CoV-2 ICU patients. Other modifications were observed at a lower taxonomy level. Complete depletion of Bifidobacterium and Clostridium was exclusively observed in ICU SARS-CoV-2 patients, which was the only group characterized by the presence of Salmonella, Scardovia, Serratia and Pectobacteriaceae. In conclusion, our preliminary results showed that nasal/oropharyngeal microbiota profiles of patients affected with SARS-CoV-2 may provide valuable information in order to facilitate the stratification of patients and may open the way to new interventional strategies in order to ameliorate the outcome of the patients.


Subject(s)
COVID-19 , Microbiota , Nose/microbiology , Oropharynx/microbiology , Adult , Aged , Bacteria/classification , Female , Humans , Male , Middle Aged , RNA, Ribosomal, 16S/genetics , Young Adult
11.
Open Forum Infect Dis ; 7(10): ofaa403, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-1059676

ABSTRACT

BACKGROUND: The pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains unclear. We report the detection of viral RNA from different anatomical districts and the antibody profile in the first 2 COVID-19 cases diagnosed in Italy. METHODS: We tested for SARS-CoV-2 RNA clinical samples, either respiratory and nonrespiratory (ie, saliva, serum, urine, vomit, rectal, ocular, cutaneous, and cervico-vaginal swabs), longitudinally collected from both patients throughout the hospitalization. Serological analysis was carried out on serial serum samples to evaluate IgM, IgA, IgG, and neutralizing antibody levels. RESULTS: SARS-CoV-2 RNA was detected since the early phase of illness, lasting over 2 weeks in both upper and lower respiratory tract samples. Virus isolate was obtained from acute respiratory samples, while no infectious virus was rescued from late respiratory samples with low viral RNA load, collected when serum antibodies had been developed. Several other specimens came back positive, including saliva, vomit, rectal, cutaneous, cervico-vaginal, and ocular swabs. IgM, IgA, and IgG were detected within the first week of diagnosis, with IgG appearing earlier and at higher titers. Neutralizing antibodies developed during the second week, reaching high titers 32 days after diagnosis. CONCLUSIONS: Our longitudinal analysis showed that SARS-CoV-2 RNA can be detected in different body samples, which may be associated with broad tropism and different spectra of clinical manifestations and modes of transmission. Profiling antibody response and neutralizing activity can assist in laboratory diagnosis and surveillance actions.

12.
PLoS One ; 15(12): e0244129, 2020.
Article in English | MEDLINE | ID: covidwho-999830

ABSTRACT

BACKGROUND: Detailed temporal analyses of complete (full) blood count (CBC) parameters, their evolution and relationship to patient age, gender, co-morbidities and management outcomes in survivors and non-survivors with COVID-19 disease, could identify prognostic clinical biomarkers. METHODS: From 29 January 2020 until 28 March 2020, we performed a longitudinal cohort study of COVID-19 inpatients at the Italian National Institute for Infectious Diseases, Rome, Italy. 9 CBC parameters were studied as continuous variables [neutrophils, lymphocytes, monocytes, platelets, mean platelet volume, red blood cell count, haemoglobin concentration, mean red blood cell volume and red blood cell distribution width (RDW %)]. Model-based punctual estimates, as average of all patients' values, and differences between survivors and non-survivors, overall, and by co-morbidities, at specific times after symptoms, with relative 95% CI and P-values, were obtained by marginal prediction and ANOVA- style joint tests. All analyses were carried out by STATA 15 statistical package. MAIN FINDINGS: 379 COVID-19 patients [273 (72% were male; mean age was 61.67 (SD 15.60)] were enrolled and 1,805 measures per parameter were analysed. Neutrophils' counts were on average significantly higher in non-survivors than in survivors (P<0.001) and lymphocytes were on average higher in survivors (P<0.001). These differences were time dependent. Average platelets' counts (P<0.001) and median platelets' volume (P<0.001) were significantly different in survivors and non-survivors. The differences were time dependent and consistent with acute inflammation followed either by recovery or by death. Anaemia with anisocytosis was observed in the later phase of COVID-19 disease in non-survivors only. Mortality was significantly higher in patients with diabetes (OR = 3.28; 95%CI 1.51-7.13; p = 0.005), obesity (OR = 3.89; 95%CI 1.51-10.04; p = 0.010), chronic renal failure (OR = 9.23; 95%CI 3.49-24.36; p = 0.001), COPD (OR = 2.47; 95% IC 1.13-5.43; p = 0.033), cardiovascular diseases (OR = 4.46; 95%CI 2.25-8.86; p = 0.001), and those >60 years (OR = 4.21; 95%CI 1.82-9.77; p = 0.001). Age (OR = 2.59; 95%CI 1.04-6.45; p = 0.042), obesity (OR = 5.13; 95%CI 1.81-14.50; p = 0.002), renal chronic failure (OR = 5.20; 95%CI 1.80-14.97; p = 0.002) and cardiovascular diseases (OR 2.79; 95%CI 1.29-6.03; p = 0.009) were independently associated with poor clinical outcome at 30 days after symptoms' onset. INTERPRETATION: Increased neutrophil counts, reduced lymphocyte counts, increased median platelet volume and anaemia with anisocytosis, are poor prognostic indicators for COVID19, after adjusting for the confounding effect of obesity, chronic renal failure, COPD, cardiovascular diseases and age >60 years.


Subject(s)
COVID-19/blood , Biomarkers/blood , Blood Cell Count , COVID-19/immunology , Cohort Studies , Demography/methods , Erythrocyte Indices/immunology , Female , Humans , Inflammation/blood , Inflammation/immunology , Leukocyte Count/methods , Longitudinal Studies , Lymphocytes/immunology , Male , Mean Platelet Volume/methods , Middle Aged , Neutrophils/immunology , Prognosis , Rome , Survivors
13.
J Infect Dis ; 222(11): 1807-1815, 2020 11 09.
Article in English | MEDLINE | ID: covidwho-919293

ABSTRACT

BACKGROUND: Descriptions of the pathological features of coronavirus disease-2019 (COVID-19) caused by the novel zoonotic pathogen severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emanate from tissue biopsies, case reports, and small postmortem studies restricted to the lung and specific organs. Whole-body autopsy studies of COVID-19 patients have been sparse. METHODS: To further define the pathology caused by SARS-CoV-2 across all body organs, we performed autopsies on 22 patients with COVID-19 (18 with comorbidities and 4 without comorbidities) who died at the National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS Hospital, Rome, Italy. Tissues from the lung, heart, liver, kidney, spleen, and bone marrow (but not the brain) were examined. Only lung tissues were subject to transmission electron microscopy. RESULTS: COVID-19 caused multisystem pathology. Pulmonary and cardiovascular involvement were dominant pathological features. Extrapulmonary manifestations included hepatic, kidney, splenic, and bone marrow involvement, and microvascular injury and thrombosis were also detected. These findings were similar in patients with or without preexisting medical comorbidities. CONCLUSIONS: SARS-CoV-2 infection causes multisystem disease and significant pathology in most organs in patients with and without comorbidities.


Subject(s)
COVID-19/pathology , Adult , Aged , Aged, 80 and over , Autopsy/methods , Bone Marrow/pathology , COVID-19/epidemiology , COVID-19/virology , Comorbidity , Female , Humans , Italy/epidemiology , Kidney/pathology , Liver/pathology , Lung/pathology , Male , Middle Aged , Spleen/pathology , Thrombosis/pathology , Vascular Diseases/pathology , Vascular Diseases/virology
15.
Microorganisms ; 8(9)2020 Aug 26.
Article in English | MEDLINE | ID: covidwho-730985

ABSTRACT

We report whole-genome and intra-host variability of SARS-Cov-2 assessed by next generation sequencing (NGS) in upper (URT) and lower respiratory tract (LRT) from COVID-19 patients. The aim was to identify possible tissue-specific patterns and signatures of variant selection for each respiratory compartment. Six patients, admitted to the Intensive Care Unit, were included in the study. Thirteen URT and LRT were analyzed by NGS amplicon-based approach on Ion Torrent Platform. Bioinformatic analysis was performed using both realized in-house and supplied by ThermoFisher programs. Phylogenesis showed clade V clustering of the first patients diagnosed in Italy, and clade G for later strains. The presence of quasispecies was observed, with variants uniformly distributed along the genome and frequency of minority variants spanning from 1% to ~30%. For each patient, the patterns of variants in URT and LRT were profoundly different, indicating compartmentalized virus replication. No clear variant signature and no significant difference in nucleotide diversity between LRT and URT were observed. SARS-CoV-2 presents genetic heterogeneity and quasispecies compartmentalization in URT and LRT. Intra-patient diversity was low. The pattern of minority variants was highly heterogeneous and no specific district signature could be identified, nevertheless, analysis of samples, longitudinally collected in patients, supported quasispecies evolution.

16.
Emerg Infect Dis ; 26(8): 1842-1845, 2020 08.
Article in English | MEDLINE | ID: covidwho-403054

ABSTRACT

We report phylogenetic and mutational analysis of severe acute respiratory syndrome coronavirus 2 virus strains from the Lazio region of Italy and provide information about the dynamics of virus spread. Data suggest effective containment of clade V strains, but subsequently, multiple waves of clade G strains were circulating widely in Europe.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Pandemics , Phylogeny , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , RNA, Viral/genetics , Adult , Aged , Betacoronavirus/classification , Betacoronavirus/pathogenicity , Bronchoalveolar Lavage Fluid/virology , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Female , High-Throughput Nucleotide Sequencing , Hospitalization , Humans , Italy/epidemiology , Male , Middle Aged , Mutation , Nasopharynx/virology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Prospective Studies , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Severity of Illness Index , Time Factors
17.
Euro Surveill ; 25(8)2020 02.
Article in English | MEDLINE | ID: covidwho-2677

ABSTRACT

A novel coronavirus (SARS-CoV-2) has been identified as the causative pathogen of an ongoing outbreak of respiratory disease, now named COVID-19. Most cases and sustained transmission occurred in China, but travel-associated cases have been reported in other countries, including Europe and Italy. Since the symptoms are similar to other respiratory infections, differential diagnosis in travellers arriving from countries with wide-spread COVID-19 must include other more common infections such as influenza and other respiratory tract diseases.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnosis , Molecular Diagnostic Techniques , Pneumonia, Viral/diagnosis , Algorithms , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/epidemiology , Diagnosis, Differential , Disease Outbreaks , Humans , Influenza, Human/diagnosis , Italy/epidemiology , Mass Screening , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Pneumonia, Viral/epidemiology , Population Surveillance , Respiratory Tract Infections/diagnosis , SARS-CoV-2 , Travel
SELECTION OF CITATIONS
SEARCH DETAIL